
The ISV focussed on their product growth sales at an
exponential rate resulting in multiple implementations
while accruing technical debt, poor and inflexible
architecture, complicated development and support
processes, and multiple patches.

Onboarding newer customers and enhancing existing
implementations on a monolith leads to business
downtimes.

The solution should - do minimal changes to Codebase to
resolve the problems faced.

PROBLEM STATEMENT

ability to sell module wise - leading to better sales
propositions, economical and standardized
ability to develop and bug fix in tandem, without
impacting the stability of the bigger platform
ability to separately operate modules while releases
with other modules are being fixed.
better fitment with customer businesses, agile
workflows, better data and support management
better integration capability allowing for stability of
data transmission and auditability

ReArchitect Existing Monolithic Solution, introduce
Microservices Architecture, embed Agility as part of the
product development methodology leading to :

OBJECTIVES

Our Startup Struggled to Scale up as we grew with more customers, with larger user base and more
complicated requirements - both mandating functionality and integration into our Enterprise.

ReArchitecting our Product into the new Digital model gave us the very edge we badly needed.

D Jose, eKapital Ltd.

Better Client Business Fitment
Improved Agility for Development
and release
Cheaper to Support
Better Reporting and Audit
Support

BENEFITS

Unflexible Monolithic
Architecture
Poor Agility for Change
High Installation & Run Cost
Poor Product Scalability
Poor Reporting & High Integration
cost

CHALLENGES

Rearchitected a Monolithic legacy
Software into Flexible Business-Driven
modular Microservices bringing in
benefits around - Pricing, Flexibility,
Stability, Scalability & Delivery Agility

AT A GLANCE

Customer Case Study

Business + Sales Enabling
a Legacy System

SUMMARY

A TECHNICAL JOURNEY

(C) BridgeApps U
K Ltd 2021-2022

Splitting the UI layer with a "backend" layer - which included (at a high level) - business, data access, business
rules, integration, error handling, and auditing layers.
Each layer was split as a Microservice and exposed via multiple APIs - some over HTTP/JSON, others via Kafka
All microservices share the same backend Data layer
Orchestration of Microservices is applied only when data cannot be directly read from the backend, reducing
noise - retaining processing power - and cheaper compute
Deployment involved Containerizing codebase and separating code repositories per Microservice
Leveraged ECS clustering services along with Fargate for hosting containers
Secured Different layers to meet Strict Infosec Guidelines

The challenge extended the mandated minimum amount of code and schema changes ensuring the integrity of
past implementations and paving way for easier migration to the renewed architecture.

At a high level, the solution involved -

TARGET ARCHITECTURE

Enabled product sales to separately sell functional modules based on customer demand,
making it cheaper and more competitive
Enabled Delivery teams and Product Management to focus on the high-value modules for more
business benefit and react quickly by embedding Agile methodology in its delivery process.

The Technological change on products achieved two major changes -

1.

2.

INTROSPECTION

The Application was a Monolith with a System and a Backend Database.

The environment was initially migrated to AWS as a Cloud-hosted
solution for QuickWin (branding-wise enabling better marketing). In this
form, it was a Java-8 App hosted on an EC2 Instance connected to an
RDS.Auth/ Auth was fully built-in as a customized layer.

This architecture had major drawbacks including - difficult to maintain
with even simple changes - for e.g. placing a new Christmas offer had a
cascading effect on other parallel changes, ongoing & releases.

This needed a complete rework, but with minimal code changes so as to
maximize the ROI on investment from past years.

AS-IS ARCHITECTURE

Fig 2. Target Architecture

Fig 1. Source Architecture

(C) BridgeApps U
K Ltd 2021-2022

